** The title, authors, and abstract for this
completion report are provided below. For a copy of the completion
report, please contact the author at liweim@msu.edu
or via telephone at 517-353-9837. Questions?
Contact the GLFC
via e-mail or via telephone
at 734-662-3209 **
Using sea lamprey
genome information to identify new research priorities and control strategies
Weiming Li1, Yuwen Chung-Davidson1,
C Titus Brown2, Scot Libants1, Steven Chang1,
Erin J. Walaszczyk1, Kaben Nanlohy1,
and Christopher Welcher3
1Department of Fisheries and Wildlife,
Michigan State University, East Lansing, Michigan 488244
2Department of Microbiology and Molecular
Genetics, Michigan State University, East Lansing, Michigan 48824
3Department of Computer Science and
Engineering, Michigan State University, East Lansing, Michigan 48824
March 2013
Abstract
The goal of this project is to develop a better understanding
for the genetic code of sea lamprey in the context of the code to other animals
as well as to identify potential opportunities to develop novel control
strategies based on this understanding. This project was undertaken to take
advantage of the Lamprey Genome Sequencing projected awarded to Washington
University by the National Human Genome Research Institute (NIGRI) of the
National Institutes of Health (NIH) The project focused on developing an open
access database useful for the sea lamprey research community and on examining
gene expression patterns relevant to development of potential control strategies.
All three objectives were accomplished. With support to this project, we
coordinated the sea lamprey genome annotation, the results of which provided
new insight into vertebrate evolution (see Nature Genetics, 45: 415–421). Using
the sea lamprey genome assembly information and the multiple information
generated from this project, we have characterized genes related to pheromone
synthesis (see Proceedings of the National Academy of Science of the United
States of America, 109(28): 11419-11424), examined chemoreceptor genes that are
relevant to detection of pheromones (see BMC Evolutionary Biology, 9:180-193),
showed gene expression changes in response to pheromone stimulation (BMC Neuroscinece, 14: 11), and demonstrated genomic bases for thermogenic fat in sea lamprey (Journal of Experimental
Biology, in press). In addition, numerous manuscripts, either in review or in
revision, describe genes or gene families related to detoxification,
chemoreception and metamorphosis. A few otential
strategies for future development or further examination have emerged from this
research.