**ABSTRACT NOT
FOR CITATION WITHOUT AUTHOR PERMISSION. The title, authors, and abstract
for this completion report are provided below.
For a copy of the full completion report, please contact the author via
e-mail at istvan.imre@algomau.ca or via telephone at 705-949-2301. Questions? Contact the GLFC
via email at frp@glfc.org or via
telephone at 734-662-3209.**
The use of repellents for sea lamprey
(Petromyzon marinus)
control
István Imre1, Richard Di Rocco1,
Cowan Belanger1, Grant E. Brown2, Nicholas S. Johnson3,
Rod McDonald4
1Biology Department, Algoma
University Queen St. East, Sault Ste. Marie, ON, P6A 2G4
2Biology Department, Condordia University, 7141 Sherbrooke
St. West, Montreal, Quebec, H4B 1R6
3USGS, Great Lakes Science Center,
Hammond Bay Biological Station, 11188 Ray Road, Millersburg MI 49759
4Fisheries and Oceans Canada, 1 Canal
Dr., Sault Ste. Marie, ON P6A 6W4
3
December 2012
ABSTRACT:
Sea lamprey, an ectoparasitic pest, invaded the upper Great Lakes in the
early 20th century and caused extensive
economic damage to a broad variety of native fish populations. We conducted an
experimental proof-ofconcept study aimed at
investigating whether sea lamprey show an avoidance response to a variety of
natural chemical stimuli. If successful, these repellents could contribute to a
new alternative control method to be added to the range of control techniques
already in use by the Great Lakes Fishery Commission. Our objectives were to investigate
(1) whether sea lamprey show
avoidance of damaged conspecific cues, damaged heterospecific cues, and direct predator cues, (2) whether this is a general
response to injured heterospecific fish or a specific
response to injured sea lamprey, (3) determine the length of avoidance response
and presence of habituation, and (4) determine whether the response is sex
specific and whether it differs between day and -night. During three nighttime
and two daytime experiments, ten replicate groups of 10 individual migratory
sea lamprey, separated by sex, were exposed to one of the following eleven
stimuli (the number of stimuli varied by experiment): distilled water
(control), extracts prepared from common white sucker (Catostomus commersonii), suckermouth
armoured catfish (Pterygoplichthys pardalis) (heterospecific
stimuli), migratory sea lamprey, decayed migratory sea lamprey, sea lamprey ammocoete (conspecific stimuli);
two varieties of phenyl-ethyl-amine (free-base and HCl
salt) solution, northern water snake (Nerodia sipedon
sipedon) washing, human saliva (direct predator
cues), and a migratory sea lamprey extract and human saliva combination. Sea
lamprey showed a strong nocturnal avoidance response to several injured conspecific cues (injured migratory lamprey, decayed
migratory lamprey) as well as direct predator cues, like human saliva (mammalian
predator cue) and phenyl-ethyl-amine (a chemical present in the urine of a
large number of mammalian carnivores) as well as a combination of injured conspecific cue and direct predator cue (migratory sea
lamprey plus human saliva). Interestingly, northern water snake washings, a
known predator of lamprey, induced a strong preference response. Further, sea
lamprey demonstrated indirectly the ability to associate danger with the alarm
cues released from injured sympatric fish species, like the common white
sucker. Sea lamprey showed a very weak to no response to tissue extract from P. pardalis, providing support for the above responses
being specific, rather than general to any injured fish. The strong avoidance
response at night to the stimuli mentioned above lasted for 20 minutes after a
20 minute exposure, and could be induced after experimental subjects being
exposed 4 times and 8 times (except human saliva), respectively, to the same
stimulus type the previous day. This finding supported the prediction that
these stimuli function as alarm cues, because sea lamprey do not habituate to
them for up to approx. 24 hours after being exposed to them repeatedly.
Northern water snake washing was ignored by sea lamprey after repeated exposure
to it. The avoidance responses and the lack of habituation were consistently
shown both by all lamprey as well as the moving complement of the experimental
“population” in the 4x and the 8x pre-exposure nighttime experiments,
presumably because increasingly larger proportion of the experimental subjects
were mobile at night, as the migratory season progressed. Daytime experiments
performed at low water temperatures early in the migratory season and at high
water temperatures later in the season indicated a reduced avoidance response
as compared to nighttime findings, with avoidance being shown only by moving
animals, but not by resting or hiding individuals. Higher daytime water
temperatures resulted in a higher proportion of animals being active; moving
sea lamprey strongly avoided injured ammocoete alarm
cues at low water temperatures (out of seven experimental stimuli), while
migratory sea lamprey alarm cues and PEA (out of six experimental stimuli)
induced strong avoidance responses at high water temperatures. There was some
evidence for a stronger avoidance response by females as compared to males to
some stimuli; however, sex differences in avoidance response to repellents need
further research. The above findings raise the realistic possibility of using
the above repellents for efficient behavioural manipulation
of sea lamprey populations in the wild at night and during the day at high
water temperatures, but probably not during the day at water temperatures below
10oC, due to response by a
smaller proportion of the population to a reduced number of cues during the
day. Further research should explore the effect of alarm cue concentration on
the strength of avoidance, as well as the efficiency of application of the
above stimuli in the wild, where sea lamprey of both sexes migrate in streams
that are variable in size, temperature, microhabitat type and flow conditions.