**ABSTRACT NOT FOR CITATION WITHOUT AUTHOR PERMISSION. The title, authors, and abstract for this completion report are provided below. For a copy of the full completion report, please contact the author via e-mail at jhume@msu.edu. Questions? Contact the GLFC via email at frp@glfc.org or via telephone at 734-662-3209.**
Selective removal of sea
lamprey via behavioral guidance in a model fishway: a proof of concept test
J.B. Hume1, C.M. Wagner1,
M.C. Lucas2, U. Reinhardt3, P. Hrodey4, and T.
Castro-Santos5
1Room 13, Natural Resources Building, 480 Wilson Road,
Michigan State University, East Lansing, MI 48824.
2Durham University, School of Biological & Biomedical
Sciences, South Road, Durham, England, United Kingdom DH1 3LE.
3Eastern Michigan University, Biology Department, 403A Mark
Jefferson Science Complex, Ypsilanti, MI 48197.
4U.S. Fish & Wildlife Service, Marquette Biological
Station, 3090 Wright St, Marquette, MI 49855.
5US Geological Survey, Conte Anadromous Fish Research Center,
One Migratory Way, PO Box 796, Turners Falls, MA 01376.
March 2018
ABSTRACT:
Restoration
efforts of native fishes that spawn in Great Lakes tributaries are hampered by the necessity of restricting sea lamprey
access to similar spawning habitats with in-stream barriers. Our goal was to
establish the feasibility of a “Pass-and-Trap” approach to selective fish
passage as a mitigating solution to this problem; by
developing criteria whereby sea lamprey upstream movement remains restricted
while permitting the passage of native species through a barrier. Previous
GLFC-funded research revealed sea lamprey can exploit physical circumstances
other fishes cannot (ascending inclined surfaces called eel ladders) and be
behaviorally manipulated in such a way as to alter their upstream movement tendencies
(application of a putative alarm cue). Together, both features could enable the
development of a “Pass-and-Trap” fishway, one which comprises two channels to simultaneously pass native
and desirable species while entraining and removing sea lamprey from another.
We demonstrated that a large proportion of sea lamprey, when constrained in
proximity to an eel ladder, could be removed from a stream mesocosm
(total 62.7%, n = 188/300; 97.9% of those approached the eel ladder, n =
188/192). We also demonstrated that white sucker would not be
removed by this device (0% trapped). Thus establishing the viability of
an eel-ladder trap as a selective sea lamprey removal device. When a low-flow
vertical slot fishway was activated
with alarm cue, we demonstrated 100% blockage of sea lamprey could be achieved,
and this odor did not prevent passage of white sucker through the vertical
slot, which achieved 100% passage. Thus, we established the viability of this
odor as a selective behavioral deterrent to sea lamprey seeking passage through
a fishway. We successfully established several design
criteria that should be considered for future
implementation. Specifically where positioning ‘Pass’ and ‘Trap’ channels in
conjunction with any sea lamprey barrier. 1) A concentration of sea lamprey
alarm cue of 1 PPM is sufficient to achieve 100% blockage of the species
attempting to pass through an open channel, for a minimum of 4 hours. 2) This
odor does not retard or prevent upstream movement tendencies in sea lamprey,
which were found to rapidly move upstream in its
presence seeking alternate routes past. This should ensure that traps
positioned adjacent to areas activated by the cue will
remain available to sea lamprey. 3) The alarm cue appears species specific as
white sucker passage through an area activated by the cue was 100%. 4) An eel
ladder set at 45° and a length above the water surface of > 1 m did not
deter sea lamprey ascent, but did prevent ascent of white sucker. 5) Attempts
should be made to constrain sea lamprey to areas close to the eel ladder to
ensure maximum efficiency, as when constrained capture rate is significantly
higher (97.9% vs 14.5%, n = 18/124). When given larger areas to explore sea
lamprey will seek alternative routes past a barrier, therefore to improve trap
efficiency in Pass-and-Trap designs encounter rate with the removal device should be maximized.