**ABSTRACT NOT FOR CITATION WITHOUT AUTHOR PERMISSION. The title, authors, and abstract for this completion report are provided below. For a copy of the full completion report, please contact the author via e-mail at wstott@usgs.gov. Questions? Contact the GLFC via email at frp@glfc.org or via telephone at 734-662-3209.**
Development and testing of
genomic markers for Coregonus species
identification and population assessment
Wendylee
Stott1, R. Scott Cornman2, Cheryl Morrison2,
Edward Roseman3, Kevin Donner4
1 Michigan State University, c/o Great Lakes Science Center 1451 Green Rd.
Ann Arbor MI 48105
2 Leetown Science Center, USGS, 11649 Leetown Rd, Kearneysville, WV 25430
3 Great Lakes Science Center USGS, 1451 Green Rd. Ann Arbor MI 48105
4 Little Traverse Bay Bands of Odawa Indians, 7500 Odawa Circle, Harbor
Springs, MI 49740
April 2018
ABSTRACT:
High-throughput
sequencing methods can be used to identify species diagnostic markers in groups
of closely-related species. Members of the coregonine species flock in the
Laurentian Great Lakes display variation in habitat use and morphology. While
commonly used markers and sequences (e.g., microsatellite DNA loci and
mitochondrial cytochrome oxidase I) can be used to distinguish among Lake
Whitefish, Cisco, and deepwater Ciscoes (Bloater, Kiyi, Shortjaw Cisco, and
Blackfin Cisco) it is difficult to accurately distinguish among the deepwater
Ciscoes. In this project, we used restriction site-associated DNA sequencing
(RAD-seq) to identify species diagnostic SNPs in Cisco and deepwater Cisco from
lakes Superior, Michigan, Huron, and Ontario. The markers were then used to
determine the identity of larval coregonids captured in the Detroit and St.
Clair rivers. Seven candidate loci with good alignment to genes in other fish
species were identified for Cisco, Bloater, Kiyi, and Shortjaw Cisco. These
SNPs could be used to distinguish among these four species with greater
accuracy than microsatellite DNA markers, although mis-classification rates of
Kiyi remained high, possibly due to mis-identification of samples in the field,
small sample sizes during marker discovery, or because significant differences
do not exist. Most of the larval coregonids from the Detroit and St. Clair
rivers were classified as Bloater. Classifications of larval coregonids based
on the genomic markers were consistent with those derived using microsatellite
DNA loci. Based on these results, it appears that SNPs have the potential to
distinguish among deepwater Ciscoes in the Great Lakes. If these markers could
be developed into a panel using an approach such as Rapture or GT-Seq, it would
provide an accurate and cost-effective way to identify larval and juvenile
coregonids capture in monitoring and assessment programs.